Geometry of compact quasi-Einstein manifolds with boundary

نویسندگان

چکیده

In this article, we study the geometry of compact quasi-Einstein manifolds with boundary. We establish sharp boundary estimates for that improve some previous results. Moreover, obtain a characterization theorem such in terms surface gravity components, which leads to new geometric inequality. addition, prove estimate (possibly disconnected) Brown–York mass.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Spectral Geometry of Einstein Manifolds with Boundary

Let (M, g) be a compact Einstein manifold with smooth boundary. Let ∆p,B be the realization of the p form valued Laplacian with a suitable boundary condition B. Let Spec(∆p,B) be the spectrum where each eigenvalue is repeated according to multiplicity. We show that certain geometric properties of the boundary may be spectrally characterized in terms of this data where we fix the Einstein constant.

متن کامل

On quasi Einstein manifolds

The object of the present paper is to study some properties of a quasi Einstein manifold. A non-trivial concrete example of a quasi Einstein manifold is also given.

متن کامل

Einstein Manifolds and Contact Geometry

We show that every K-contact Einstein manifold is Sasakian-Einstein and discuss several corollaries of this result.

متن کامل

Manifolds with boundary and of bounded geometry

For non-compact manifolds with boundary we prove that bounded geometry defined by coordinate-free curvature bounds is equivalent to bounded geometry defined using bounds on the metric tensor in geodesic coordinates. We produce a nice atlas with subordinate partition of unity on manifolds with boundary of bounded geometry, and we study the change of geodesic coordinate maps.

متن کامل

Construction of conformally compact Einstein manifolds

We produce some explicit examples of conformally compact Einstein manifolds, whose conformal compactifications are foliated by Riemannian products of a closed Einstein manifold with the total space of a principal circle bundle over products of Kähler-Einstein manifolds. We compute the associated conformal invariants, i.e., the renormalized volume in even dimensions and the conformal anomaly in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Manuscripta Mathematica

سال: 2021

ISSN: ['0025-2611', '1432-1785']

DOI: https://doi.org/10.1007/s00229-021-01340-4